
Multivariate time series Forecasting Multi-step-ahead (univariate) Multivariate forecasting Causal inference

Machine learning for time series: from forecasting
to causal inference

TRAIL doctoral school, BeCentral

Gianluca Bontempi
Machine Learning Group

ULB, Université Libre de Bruxelles
mlg.ulb.ac.be

1/62

mlg.ulb.ac.be


Multivariate time series Forecasting Multi-step-ahead (univariate) Multivariate forecasting Causal inference

According to you...

.. what are the (three) most important
concepts (not buzzwords :-) in supervised

machine learning?
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The pillars of supervised learning

1 Dependency: a target y is dependent on an input x if x
brings information about y (i.e. knowing x reduces the
uncertainty of y)

y = f (x) + w

2 Estimation: learners are estimators submitted to the
bias/variance trade-off (i.e. not necessarily the most complex
learner that generalises the best)

3 Causality implies dependency but not the other way
round: "what if I observe" is not "what if I intervene"...
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Outline

Dependency and large-variate temporal settings (e.g. in
spatio-temporal time series)
ML and forecasting:

One-step-ahead univariate forecasting
Multi-step-ahead univariate forecasting
Multivariate multi-step-ahead forecasting
Dynamic factor model based on machine learning (DFML)

ML and causal inference: from associative dependencies to
causal relationships in multivariate temporal data.
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Multivariate series: environment
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Multivariate series: business

Time plots of daily sales in natural logarithms of a clothing brand in 25 provinces in China from 1
January 2008 to 9 December 2012 (from Pena and Tsay book).
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Multivariate multi-step-ahead forecasting

Probably the most difficult prediction task in the world....

Large dimensionality
Long prediction horizons
Nonlinearity
Noise
Cross-sectional and temporal dependencies
Nonstationarity, seasonality
Relevant application domains: Internet of Things, finance,
spatio-temporal tasks (climate, energy)
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Graphical representation of dependency (univariate)

Autoregressive process yt+1 = f (yt , yt−1) + wt+1

y
t

y
t-1

y
t-2

y
t-3 y

t-4

D-separation reads off the graph all existing (conditional)
dependencies.
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Graphical representation of dependency (multivariate)
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Temporal and cross-variate dependencies.
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Bias/variance trade-off

complexity

generalization
error

Bias

Variance

Underfitting Overfitting

Process: Learner:
Noise +→ V Complexity (e.g. # parameters, VC dim) +→ V, −→ B
Sample size −→ V Regularisation −→ V, +→ B
Dimension +→ V Dropout −→ V, +→ B
Nonlinearity +→ B AutoML (e.g. hyperparameter grid search) +→ V, −→ B
Nonstationarity +→ B
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Forecasting
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Univariate one-step-ahead forecasting
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Univariate one-step-ahead

ML regression plus noise form

y = f (x) + w

where w is the noise.
Autoregressive formulation: output is y = yt+1 and inputs
are lagged values

yt+1 = f

yt , yt−1, . . . , yt−n+1︸ ︷︷ ︸
x

+ wt+1

Conventional ML supervised learning machinery may be used
to address such task
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Training data embedding

Given the series {y1, . . . , yT} we derive

X =


yT−1 yT−2 . . . yT−n

yT−2 yT−3 . . . yT−n−1
...

...
...

...
yn yn−1 . . . y1

 , Y =


yT
yT−1
...

yn+1


and use them as training set of your preferred learner (FNN,
Random Forest, Lazy Learning, Gradient Boosting, ...).
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Nearest-neighbor one-step-ahead forecasts
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Multi-step-ahead forecasting
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Univariate multi-step-ahead forecasting

We classify the methods for H-step-ahead prediction according to:
1 iterated or direct forecasting
2 training criterion (single or multi-step)
3 single-output or multi-output predictor.
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Univariate multi-step-ahead forecasting strategies

1 Iterated: iterates a one-step-ahead predictor with
one-step-ahead training criterion

2 Iterated: iterates a one-step-ahead predictor with
htr -step-ahead training criterion (1 < htr ≤ H).

3 Direct: set of independent forecasts at different horizons
t + h, h = 1, . . . ,H.

4 MIMO: vector of conditionally dependent forecasts
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Iterated forecasting
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Iterated (or recursive) forecasting: pros/cons

(+): reuse of conventional supervised ML.
(+): easy design
(-): inputs are predicted values instead of actual observations.
(-) : undesired accumulation/propagation of the error.
(-): low accuracy in long horizon tasks because of
one-step-ahead criterion.

20/62



Multivariate time series Forecasting Multi-step-ahead (univariate) Multivariate forecasting Causal inference

Iterated with h-step training criterion

One-step-ahead predictors with multi-step-ahead cost
function.
Two approaches

1 Weight tuning: Recurrent Neural Networks, LSTM
2 Model selection: Lazy Learning algorithm with bandwidth

selection based on multi-step-ahed leave-one-out error (ranked
second in the 1998 KULeuven Time Series competition).
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Recurrent neural networks

They date back to (Rumelhart, 1986) and apply neural
network learning to sequential data y1, . . . , yT

Recurrent architecture: notion of internal latent state ht
whose dynamics

ht = F (ht−1, xt , θF ) = tanh(b + Wht−1 + Uxt)

underlies the temporal sequence

ŷt = ot = G (ht , θG ) = c + Vht
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RNN (from Deep Learning book.)

Training data: input/output sequence

〈x1, y1〉, 〈x2, y2〉 . . . 〈xT , yT 〉
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Backpropagation through time

BPTT: application of back prop to the unrolled graph
Very long computational chains due to the recursion, e.g.

ht = Wht−1

After T steps, if W is not a unit matrix, the term W T could
be ether vanished or exploded.
For long sequences (beyond 10), BPTT might take a lot to
converge.
Solutions: skip connections, gated units, LSTM
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Direct strategy

It learns independently H models fh

yt+h = fh(yt , . . . , yt−n+1) + wt+h

with t ∈ {n, . . . ,N − H} and h ∈ {1, . . . ,H},
use of conventional supervised learning to estimate H
functions fh,
multi-step forecast by concatenating the H predictions.
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Direct strategy: pros/cons

(+): reuse of conventional supervised ML.
(+): no use of approximated values to compute the forecast,
then not exposed to error accumulation
(-) H models are learned independently and no statistical
dependencies between the predictions ŷN+h is considered.
(-) highly nonlinear dependency between values at distant
instants.
(-) large computational time for large horizons.
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What is the best continuation?
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MIMO (or joint) strategy

single multiple-output model

[yt+H , . . . , yt+1] = F (yt , . . . , yt−n+1) + W

where t ∈ {n, . . . ,N − H}, F : Rn → RH is a vector-valued
function, and W ∈ RH is a noise vector with a covariance that
is not necessarily diagonal.
forecasts returned in a single-step by a multiple-output F̂

[ŷt+H , . . . , ŷt+1] = F̂ (yN , . . . , yN−n+1)
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MIMO strategy

(+): preserves the stochastic dependency characterizing the
time series.
(+): avoids the conditional independence assumption made by
the Direct strategy
(+): avoids the accumulation of errors which plagues the
Recursive strategy.
(-): multi-task learners
(-): complex multi-output mapping
(-) all horizons constrained by the same model structure:
variants have been proposed.
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Time series dependencies
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n = 2 NAR dependency yt = f (yt−1, yt−2) + w(t).
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Iterated modeling of dependencies
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Direct modeling of dependencies

yt+1

yt-1 yt
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Multivariate forecasting
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Multivariate temporal dependency
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Temporal and cross-variate dependencies.
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Multivariate forecasting strategies

1 Set of m independent univariate tasks.
2 Vector Autoregressive (VAR): linear multivariate version of AR
3 Multi or Single-Output Multi-Inputs forecasting tasks

(requiring feature selection or regularization techniques)
4 Recurrent/LSTM Neural Networks
5 Dimension Reduction techniques

1 Dynamic factor models (DFM)
2 Autoencoders: nonlinear compression
3 Partial least squares (PLS): projects both the inputs and the

outputs to a new space
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Univariate approach

m independent prediction tasks with horizon H.
Cross-sectional dependencies are ignored.
Conventional statistical forecasting (e.g. exponential
smoothing, ARIMA) may be used.
Conventional ML supervised learning may be used as well:

y
[1]
t+1 = f

[1]
1

(
y

[1]
t , . . . , y

[1]

t−n[1]+1

)
+ w

[1]
t+1

. . . . . .

y
[m]
t+H = f

[m]
H

(
y

[m]
t , . . . , y

[m]

t−n[m]+1

)
+ w

[m]
t+H
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Multi-input multi-output approach

Set of multi-input single-output tasks
Several dependencies to fit: for instance, if m = 2 and H ≥ 1

y
[1]
t+1 = f

[1]
1

(
y

[1]
t , . . . , y

[1]

t−n[1]+1, . . . , y
[m]
t , . . . , y

[m]

t−n[m]+1

)
+ w

[1]
t+1

. . . . . .

y
[m]
t+H = f

[m]
H

(
y

[1]
t , . . . , y

[1]

t−n[1]+1, . . . , y
[m]
t , . . . , y

[m]

t−n[m]+1

)
+ w

[m]
t+H

Several hyperparameters: multi-step strategy, functions
f

[1]
1 , . . . , f

[m]
H , orders n[1], . . . , n[m],...

Feature extraction, selection and regularization play a major
role.
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Multi-input data embedding

X =


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mn inputs and mH outputs.
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Dynamic factor models

Basic idea from econometrics: a small number k of unobserved
series (or factors) can account for a much larger number n of
variables.
One-step-ahead factor forecasting

Yt+1 = WZt+1 + εt+1

Zt+1 = A1Zt + · · ·+ AnZt−n+1 + ηt+1

where Zt is the vector of unobserved factors of size k
(k << m), Ai are k × k coefficient matrices, W is the matrix
(m× k) of dynamic factor loadings and the disturbances terms
(also called idiosyncratic disturbances) are assumed to be
uncorrelated.
The latent factors follow a VAR time series process
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Dynamic factors

y[1]

y[i]

y[m]

y[1]y[1]

y[i]

y[m]

z[1]

z[k]

…

z[1]

…

z[k]
m m m

40/62



Multivariate time series Forecasting Multi-step-ahead (univariate) Multivariate forecasting Causal inference

DFM approximation

yt[1] yt[m]

Zt
[1] Zt
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Zt-1
[1] Zt-1

[p]
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t

time

Two main assumptions: independent factors and conditionally
independent observed variables
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Multivariate strategies: bias/variance analysis

Possible approaches
independent univariate tasks

(+): low variance, low complexity
(-): large bias, neglecting all cross-sectional dependencies

multi-input multi-output tasks
(+): low bias, faithful accounting of dependencies
(-): dependent on feature selection (or regularization)
strategies
(-): large variance, very high complexity (large number of
input features and outputs)

Dynamic factor approach
(+): low variance, (small number of factors)
(-): large bias, linear model and possible wrong number of
latent variables
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The DFML forecaster

Machine learning extension of the DFM:
1 nonlinear and multi-step-ahead forecaster of the factors
2 joint selection of the number of the factors and

multi-step-ahead strategy.

Linear (PCA) or nonlinear (autoencoder) technique for
dimensionality reduction,
It forecasts each factor independently using a nonlinear model
and a univariate multi-step-ahead forecasting strategy
Joint selection of the hyperparameters (number of factors,
predictor, multi-step-ahead strategy) by using out-of-sample
assessment.
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Experimental results

Three case studies
Synthetic cross-sectional and temporal time series: 14
multivariate stochastic processes with cross-sectional and
temporal dependencies
Earth Surface Temperature series: temperature evolution in
n = 200 countries. Data from Earth Surface Temperature
series made available by Berkeley Earth in a Kaggle dataset.
Volatility series: 7 multivariate volatility proxies derived from
n = 40 series of the French stock market index CAC40 in the
period ranging from 05-01-2009 to 22-10-2014 (almost 6
years)
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Cross-sectional and temporal series

Yt+1[j] = −0.4
(3− Ȳt [Nj ]

2)

(1 + Ȳt [Nj ]
2)

+ 0.6
3− (Ȳt−1[Nj ]− 0.5)3

1 + (Ȳt−1[Nj ]− 0.5)4
+ Wt+1[j]

Yt+1[j] = (0.4− 2 exp(−50Ȳt−5[Nj ]
2))Ȳt−5[Nj ] + (0.5− 0.5 exp(−50Ȳt−9[Nj ]

2))Ȳt−9[Nj ] + Wt+1[j]

Yt+1[j] = (0.4− 2 cos(40Ȳt−5[Nj ]) exp(−30Ȳt−5[Nj ]
2))Ȳt−5[Nj ] + (0.5− 0.5 exp(−50Ȳt−9[Nj ]

2))Ȳt−9[Nj ] + Wt+1[j]

Yt+1[j] = 2 exp(−0.1Ȳt [Nj ]
2)Ȳt [Nj ]− exp(−0.1Ȳt−1[Nj ]

2)Ȳt−1[Nj ] + Wt+1[j]

Yt+1[j] = −2Ȳt [Nj ]I (Ȳt [Nj ] < 0) + 0.4Ȳt [Nj ]I (Ȳt [Nj ] < 0) + Wt+1[j]

Yt+1[j] = 0.8 log(1 + 3Ȳt [Nj ]
2)− 0.6 log(1 + 3Ȳt−2[Nj ]

2) + Wt+1[j]

Yt+1[j] = 1.5 sin(π/2Ȳt−1[Nj ])− sin(π/2Ȳt−2[Nj ]) + Wt+1[j]

Yt+1[j] = (0.5− 1.1 exp(−50Ȳt [Nj ]
2))Ȳt [Nj ] + (0.3− 0.5 exp(−50Ȳt−2[Nj ]

2))Ȳt−2[Nj ] + Wt+1[j]

Yt+1[j] = 0.3Ȳt [Nj ] + 0.6Ȳt−1[Nj ] +
(0.1− 0.9Ȳt [Nj ] + 0.8Ȳt−1[Nj ])

(1 + exp(−10Ȳt [Nj ]))
+ Wt+1[j]

Nj : indices of the set of time series which are neighbors of the jth
component. Ȳt [Nj ]: average of the value of the neighboring series
at time t.
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NMSE: normalized mean squared error averaged over all the
continuation sets

DFMLPC : fixed number of factors (k = 3) and multi-step-ahead
Direct strategy

DFML’PC : automatic selection strategy of the number of factors (in
the range [1, k]) and the multi- step-ahead strategy (among Direct,
Iterated and MIMO).
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Earth Surface Temperature

n H DFM DFMLPC DFML’PC DFMLA DFML’A RNN PLS UNI NAIVE
100 2 0.099 0.111 0.099 0.566 0.594 0.099 0.227 0.265 0.692
100 5 0.13 0.151 0.092 1.144 0.394 0.102 0.664 0.271 1.981
100 10 0.142 0.164 0.093 1.709 0.6 0.113 0.673 0.295 2.247
100 20 0.165 0.173 0.089 1.721 0.873 0.11 0.653 0.255 2.165
100 50 0.288 0.187 0.091 1.621 0.838 0.111 0.612 0.259 1.894
200 2 0.124 0.198 0.14 0.7 0.483 0.188 0.49 0.33 0.703
200 5 0.155 0.292 0.135 1.131 0.596 0.183 0.834 0.328 1.852
200 10 0.179 0.352 0.135. 1.329 0.613 0.202 0.854 0.327 2.125
200 20 0.206 0.381 0.157 1.472 0.645 0.229 0.837 0.34 2.038
200 50 0.266 0.405 0.169 1.721 0.764 0.242 0.807 0.344 1.801
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Volatility

7 multivariate volatility proxies from n = 40 series of the
French stock market index CAC40 from 05-01-2009 to
22-10-2014 (almost 6 years).
N = 1489 OHLC (Opening, High, Low, Closing) and Volume
samples for each time series.

Ind H DFM DFMLPC DFML’PC DFMLA DFML’A RNN PLS UNI NAIVE
σ0 2 0.417 0.439 0.409 0.462 0.465 0.463 0.416 0.564 0.774
σ0 5 0.424 0.439 0.413 0.463 0.468 0.442 0.421 0.563 0.838
σ0 10 0.426 0.435 0.454 0.461 0.462 0.439 0.419 0.561 0.871
σ0 20 0.434 0.445 0.425 0.465 0.474 0.446 0.423 0.573 0.753
σ0 50 0.433 0.449 0.431 0.465 0.472 0.443 0.438 0.573 0.759
σ1 2 0.362 0.391 0.358 0.422 0.444 0.382 0.369 0.484 0.617
σ1 5 0.363 0.373 0.354 0.416 0.425 0.382 0.364 0.492 0.694
σ1 10 0.37 0.381 0.354 0.414 0.425 0.379 0.361 0.494 0.685
σ1 20 0.384 0.397 0.383 0.423 0.433 0.385 0.39 0.509 0.718
σ1 50 0.389 0.411 0.383 0.430 0.454 0.390 0.387 0.518 0.647
σ2 2 0.305 0.318 0.309 0.384 0.406 0.333 0.321 0.41 0.518
σ2 5 0.31 0.317 0.304 0.380 0.394 0.349 0.316 0.404 0.553
σ2 10 0.324 0.323 0.3 0.376 0.389 0.347 0.316 0.407 0.522
σ2 20 0.35 0.343 0.354 0.385 0.416 0.360 0.338 0.438 0.534
σ2 50 0.375 0.383 0.328 0.402 0.421 0.399 0.326 0.493 0.543
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Volatility

Ind H DFM DFMLPC DFML’PC DFMLA DFML’A RNN PLS UNI NAIVE
σ3 2 0.322 0.335 0.332 0.426 0.441 0.356 0.341 0.407 0.507
σ3 5 0.325 0.334 0.323 0.419 0.433 0.363 0.336 0.416 0.587
σ3 10 0.338 0.345 0.328 0.420 0.431 0.364 0.337 0.422 0.587
σ3 20 0.364 0.367 0.354 0.433 0.445 0.379 0.36 0.453 0.59
σ3 50 0.386 0.388 0.344 0.436 0.460 0.403 0.345 0.506 0.561
σ4 2 0.3 0.312 0.314 0.389 0.412 0.332 0.318 0.392 0.523
σ4 5 0.304 0.319 0.309 0.388 0.397 0.326 0.316 0.396 0.567
σ4 10 0.319 0.331 0.302 0.385 0.406 0.340 0.315 0.4 0.511
σ4 20 0.344 0.34 0.328 0.388 0.426 0.359 0.329 0.427 0.494
σ4 50 0.373 0.386 0.329 0.405 0.402 0.388 0.322 0.504 0.536
σ5 2 0.299 0.311 0.312 0.389 0.412 0.329 0.317 0.391 0.521
σ5 5 0.304 0.317 0.304 0.387 0.400 0.341 0.316 0.394 0.564
σ5 10 0.319 0.327 0.301 0.387 0.402 0.336 0.315 0.398 0.51
σ5 20 0.345 0.341 0.309 0.389 0.430 0.352 0.329 0.426 0.495
σ5 50 0.373 0.383 0.328 0.395 0.410 0.405 0.322 0.504 0.535
σ6 2 0.297 0.312 0.312 0.385 0.428 0.322 0.325 0.385 0.506
σ6 5 0.299 0.309 0.302 0.380 0.415 0.334 0.314 0.39 0.554
σ6 10 0.312 0.32 0.296 0.381 0.423 0.356 0.313 0.4 0.507
σ6 20 0.336 0.34 0.319 0.386 0.428 0.351 0.327 0.424 0.491
σ6 50 0.365 0.382 0.324 0.401 0.433 0.401 0.319 0.494 0.528
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Causal inference
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Association vs causality

y[1]t

y[1]t-1 y[1]t-2

y[1]t-3 y[1]t-4

y[2]t

y[2]t-1 y[2]t-2

y[2]t-3 y[2]t-4

y[m]
t

y[m]
t-1 y[m]

t-2

y[m]
t-3 y[m]

t-4

y [1] and y [m] are dependent but none of them is a cause of the
other.
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Causal inference and time series

Aim: discriminate between associative dependencies and
effective causal relationships in observational data.
Highly challenging in large-variate and temporal settings (e.g.
in spatio-temporal time series) where the multivariate nature
of interactions induces a significant correlation between most
of the variables.
Conventional algorithms relies on conditional independence
tests or maximum likelihood optimisation.
D2C approach rationales:

dependency is symmetric, causality is not
causality leaves footprints in distributions
a machine learning strategy may be used to reduce causal
indistinguishability.
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The D2C approach

Given two variables, the D2C approach infers from a number
of observed statistical features of the n-variate distribution the
probability of the existence of a directed causal link.
Causal inference as a supervised learning task where
inputs are features describing the probabilistic dependency and
the output is a class denoting the existence of the causal link.
Once sufficient training data are made available, conventional
feature selection algorithms and classifiers can be used to
return a prediction.
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Causality and asymmetric descriptors
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di
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D2C training phase
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The D2C approach

zi

zj

c(1)i c(2)i

e(1)i

c(1)j c(2)j

e(1)j

s(1)i

s(1)j

ai

di

Training phase:
1 generate and simulate a large number of

Bayesian networks.
2 for a number of edges, measure a number of

asymmetric descriptors and the corresponding
label (e.g. node 1 parent of node 2).

3 train a classifier (e.g. a Random Forest)
returning the probability of a causal link given
the descriptors value.

Prediction phase: given a dataset and two variables
of interest

1 estimate the Markov Blankets of the two
variables of interest and ranks its components
in terms of their causal nature,

2 compute a number of asymmetric descriptors
and

3 return the classifier prediction.
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Context-aware D2C

1 it ranks the most relevant variables for zi and zj into the sets
Mi and Mj .

2 for each pairs (m(k)
i ,m(k)

j ), where m(k)
i ∈Mi and m(k)

j ∈Mj ,
it computes (conditional) mutual information descriptors

d
(k)
1 (i , j) = I (zi ; m

(k)
j |zj), d

(k)
2 (i , j) = I (m(k)

i ; m(k)
j |zj),

d
(k)
3 (i , j) = I (m(k)

i ; m(k)
j |zj), d

(k)
4 (i , j) = I (zj ; m

(k)
i )

3 for each pairs (m(k)
i ,m(t)

i ) and (m(k)
i ,m(t)

j ), where

m(k)
i ,m(t)

i ∈Mi and m(k)
j ,m(t)

j ∈Mj , it computes the context
aware interaction information descriptor

4 it computes a set of quantiles of the empirical distributions of
the terms computed in the two steps before and use them as
input vector of the D2C classifier.
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Experiments

Causal inference experiments on a large number of simulated
stationary time series characterized by nonlinearity, large
dimension and cross-sectional dependencies.
Benchmarking against D2C and state-of-the-art causal
inference algorithms:

Semi-Interleaved HITON-PC local discovery structure learning
algorithms (HPC)
incremental association MB constraint-based structure learning
algorithm (IAMB)
Fast-IAMB version of IAMB (FIAMB)
Grow-Shrink (GS)
PC from pcalg package (PCalg)
Granger test (GRA) from lmtest package
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Results BER (the lower the better!)

Distribution of the BER accuracy for the 500 test time series.
Above (below) we report the BER distribution over the time series
whose associated DAG has less (more) than 100 nodes.
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Forecasting: conclusions

"We are drowning in data and starving for knowledge"
In the era of big data the Internet of Things (IoTs) technology
produces massive amounts of heterogeneous multidimensional
temporal data in real time.
Multivariate and multistep prediction is the most difficult
prediction problem conceivable in forecasting.
Need to address jointly multiple bias/variance issues
originating from different aspects of the task (nonlinearity,
dimensionality, large horizon, multiple dependencies, noise)
No easy one-fits-all solution!
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Causal inference: conclusions

"We are drowning in associations and starving for causality"
Sometimes accurate prediction is not sufficient: we want to
understand the causal mechanism.
Big data expose our society to a number of (real or presumed)
associations that could have impact on lifestyle, health
choices, economic and political decisions.
Pessimistic point of view: Correlation (or dependency) does
not imply causation.
Optimistic point of view: Causation implies correlation (or
dependency).
Causality leaves footprints on the patterns of stochastic
dependency which can be (hopefully) retrieved from
data.
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