

Deep learning from multi-expert annotations: need for prior consensus or not?

Christine Decaestecker

FNRS

Laboratory of Image Synthesis and Analysis, EPB, ULB

TRAIL doctoral school seminar UCL – February 2023

EXPERT ANNOTATIONS IN MEDICAL IMAGING

- Time-consuming
- Subjective
- Expert's experience
- High inter-expert
 variability

No actual ground truth for *training* and *assessing* machine learning models

- (a) Single expert
- (b) Multiple experts working collegially
- (c) Multiple experts working independently on subsets (possibly training and testing sets)
- (d) Automated method refined by expert(s)
- (e) Expert with senior review
- (f) Multiple experts working independently on the same set, with automated consensus (or senior review)

AUTOMATED CONSENSUS

Pixel-wise Majority Vote

STAPLE (*Simultaneous Truth and Performance Level Estimation*):

- available in Python library SimpleITK
- expectation-maximization (EM) algorithm
- estimates simultaneously the "ground truth" and the confusion matrix characterizing each expert
- with a spatial homogeneity constraint (via additional embedded iteration process)
- \Rightarrow rather heavy computation

Gleason 2019 challenge dataset

Using either multi-expert annotations or a single consensus annotation to train a deep neural network for the purpose of automating prostate cancer grading (Epstein scoring)

• Epstein score : based on the 2 most prevalent Gleason grades

(simplified : Grade 5 merged with Grade 4 = Grade 4+, due to very few examples)

Simplified Epstein score	Most prevalent grade	Second most prevalent grade
Epstein 0	None	None
Epstein 1	Grade 3	None
Epstein 2	Grade 3	Grade 4+
Epstein 3	Grade 4+	Grade 3
Epstein 4	Grade 4+	None

(Complete classification : Epstein 3 = Grade 4 & Grade 3 Epstein 4 = Grade 4 (all) Epstein 5 if includes a Grade 5 lesion)

Disagreement / Dissimilarity matrix

 $(1-\kappa_0)$

	E1	E2	E3	E4	E5	E6	ST	MV	wv
E1	0	0,52	0,43	0,47	0,44	0,47	0,35	0,36	0,38
E2	0,52	0	0,14	0,33	0,08	0	0,04	0,06	0,06
E3	0,43	0,14	0	0,23	0,16	0,26	0,11	0,11	0,1
E4	0,47	0,33	0,23	0	0,25	0,24	0,15	0,15	0,17
E5	0,44	0,08	0,16	0,25	0	0,18	0,13	0,12	0,1
E6	0,47	0	0,26	0,24	0,18	0	0,12	0,11	0,11
ST	0,35	0,04	0,11	0,15	0,13	0,12	0	0,02	0,03
MV	0,36	0,06	0,11	0,15	0,12	0,11	0,02	0	0,02
wv	0,38	0,06	0,1	0,17	0,1	0,11	0,03	0,02	0

Multi-Dimensional Scaling projection

Gleason 2019 dataset

WV: weights each expert by its average head-to-head agreement with the other experts (computed with the unweighted kappa).

- Input: Tissue core
- System output: Epstein score
- Intermediate: Class map (explainability)

- Tissue patches
- Output = maps of probabilities to belong to each grade class
- **Post-Processing**: Identifying **uncertain** predictions ($P_{max} \le 2^*P_2$)

- 1. The « Expert system » returns more uncertain predictions
- 2. The proportion of uncertain pixels can be used to highlight difficult cases, requiring more advice from experienced pathologists
- 3. Removing them leads to better Epstein predictions

Uncertain

• McNemar test to compare predictions of the 4 systems (on an independent test set):

		Post-Processing			
		Without Threshold		With Threshold	
Network training supervision	STAPLE	STAPLE w/o Th		STAPLE Th	
	Expert	Expert w/o Th		Expert Th	

- Need of a ground truth for evaluating performance metrics
 - ⇒ High inter-pathologist variability
 - ⇒ STAPLE annotations to estimate "ground truth" Epstein score

- Post-processing significantly improves the expert system that outperforms the STAPLE system

		Post-Processing			
		Without Threshold	Nithout Threshold		
Network training supervision	STAPLE	Predicted 23/77	0.227 <->	Predicted 28/77	
		0.263		0.007	
	EXPERT	Predicted 29/77	<-> 0.001	Predicted 44/77	

McNemar test: P-values are in bold Number of agreements with STAPLE-based Epstein scores

- Inter-pathologists agreements (R_K*) range: 0.37 to 0.55 (excluding Pa. 2 and Pa. 6 with too few annotations)
- Post-processed expert system has the best agreement levels with the pathologists

		SYSTEMS					
		STAPLE	STAPLE	Expert	Expert		
	STAPLE	w/o Th	Th	w/o Th	Th		
Pa. 1	0.47	0.14	0.22	0.23	0.40		
Pa. 2	0.84	0.46	0.66	0.56	0.68		
Pa. 3	0.66	0.35	0.45	0.39	0.47		
Pa. 4	0.73	0.24	0.37	0.40	0.50		
Pa. 5	0.67	0.33	0.37	0.52	0.57		
Pa. 6	0.71	0.20	0.31	0.32	0.52		

Purple values = agreements with high number of annotated cores (tissue samples)

* Multiclass Matthews correlation coefficient (more reliable than kappa on unbalanced data sets, Delgado & Tibau (2019) PLoS ONE 14(9): e0222916)

- Performance evaluated using STAPLE ⇒ possibly biased
- Alternative: number of Epstein scores among the pathologists' scores and among the majority agreed score

How to train a (classification) model with multi-expert annotations?

Karimi, et al. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis, Medical Image Analysis, 2020.

- Single pathologist: uses the label provided by one pathologists only (averaged model output)
- Pixel-wise majority vote
- STAPLE
- **STAPLE + iMAE¹ loss** (reduced the impact of large losses in mean absolute error)
- **Minimum-loss label**: for each training patch, selects the label with the smallest loss for error back-propagation.
- Annotator confusion estimation² (for image classification): simultaneously learns each individual annotator model (as a confusion matrix) and the underlying true label distribution (like STAPLE process but "included" into the predictive model), using regularised cross-entropy loss function.

¹ Wang et al. IMAE for Noise-Robust Learning. arXiv:1903.12141

² Tanno, et al. Learning from noisy labels by regularized estimation of annotator confusion. Proc. IEEE/CVF conf on computer vision and pattern recognition. 2019.

Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion (Tanno et al., 2019)

The model parameters { θ , $A^{(1)}$, $A^{(2)}$, $A^{(3)}$, $A^{(4)}$ } are optimized to minimize the sum of four crossentropy losses between each estimated annotator distribution $p^{(r)}(x)$ and the noisy labels $\tilde{y}^{(r)}$ observed from each annotator, with a regularisation term (= trace of mean $A^{(r)}$). **Assumptions to be noted** : (1) annotators are statistically independent, (2) annotation noise is independent of the input image (does not consider specific instance difficulty).

- **Results** (5-fold cross-validation)
 - Ground truth labels on the test data are estimated using STAPLE ("given the high inter-observer variability, this would be our best estimate of the ground truth")

	Cancerous vs. benign		High-grade (4,5	% of large	
Method	accuracy	AUC	accuracy	AUC	classif. errors*
Single pathologist	0.8	0.78	0.65	0.61	0.07
Majority vote	0.86	0.87	0.73	0.74	0.03
STAPLE	0.84	0.86	0.73	0.72	0.03
STAPLE + iMAE loss	0.93	0.91	0.76	0.79	0.03
Minimum-loss label	0.88	0.88	0.8	0.82	0.03
Annotator confusion estimation	0.92	0.93	0.8	0.82	0.01
STAPLE (3-3)	0.86	0.86	0.69	0.7	0.02
STAPLE + iMAE loss (3-3)	0.9	0.88	0.75	0.78	0.02
Annotator confusion estimation (3-3)	0.9	0.88	0.73	0.76	0.03

* With a difference of at least 2 (ordered) classes (e.g. "benign" and grade 4 or 5)

- Different approaches for handling multi-expert annotations, involving or not prior consensus for training
- When the "ground truth" on the test set is produced using STAPLE consensus, training with consensus annotations
 - is not the most efficient
 - decreases the network ability to "learn" uncertainty
- Promising approaches for image classification (should be adapted for segmentation)
 - Annotator confusion estimation
 - Minimum-loss label

ACKNOWLEDGMENTS

Alain Zheng, Ir

Adrien Foucart, Ir, PhD

Alberto Franzin, Ir, PhD

Laura Galvez Jiménez, Ir