
Intro to deep RL,
the concept of generalization and

the importance of representation learning

Vincent François-Lavet

27 octobre 2023

1/91

Motivation : Overview

2/91

Motivation

Figure – Video of a trained agent for an ATARI game : Seaquest

3/91

Motivation : Robotics

Figure – Application in robotics (credits : Jan Peters’team, Darmstadt)

4/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Outline

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

5/91

Markov Decision Processes

6/91

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
xt → xt+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
xt → xt+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= xt

Environment
xt → xt+1

ωt+1

Environment
xt → xt+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

7/91

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
xt → xt+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
xt → xt+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= xt

Environment
xt → xt+1

ωt+1

Environment
xt → xt+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

7/91

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
xt → xt+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
xt → xt+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= xt

Environment
xt → xt+1

ωt+1

Environment
xt → xt+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

7/91

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
xt → xt+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
xt → xt+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= xt

Environment
xt → xt+1

ωt+1

Environment
xt → xt+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

7/91

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
xt → xt+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
xt → xt+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= xt

Environment
xt → xt+1

ωt+1

Environment
xt → xt+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

7/91

Example of a Markov Decision Process (MDP)

Figure – Representation of a (deterministic) mini grid-world with 9
discrete states and 4 discrete actions. The agent is able to move in the
four directions, except when the agent is trying to get ”out of the
grid-world”.

8/91

Definition of an MDP
An MDP can be defined as a 5-tuple (X ,A,T ,R, γ) where :

I S is a finite set of states {1, . . . ,NS},
I A is a finite set of actions {1, . . . ,NA},
I T : X ×A → P(X) is the transition function (set of conditional

transition probabilities between states),

I R : X ×A×X → R is the reward function, where R is a continuous set
of possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax]),

I γ ∈ [0, 1) is the discount factor.

s0 s1 s2

a0 a1r0 r1

. . .
Policy

Reward
function

R(s0, a0, s1)

Transition
function

T (s0, a0, s1)

Policy
Reward
function

R(s1, a1, s2)

Transition
function

T (s1, a1, s2)

9/91

Performance evaluation

In an MDP (S,A,T ,R, γ), the discounted expected return
V π(s) : S → R (π ∈ Π, e.g., X → A) is defined such that

V π(s) = E
[∑∞

k=0
γk rt+k | st = s, π

]
, (1)

with γ ∈ [0, 1).

From the definition of the (discounted) expected return, the optimal
expected return can be defined as

V ∗(s) = max
π∈Π

V π(s). (2)

and the optimal policy can be defined as :

π∗(s) = argmax
π∈Π

V π(s). (3)

10/91

Overview of the techniques used for finding the optimal
policy π∗

In general, an RL agent may include one or more of the following
components :

I a model of the environment in conjunction with a planning
algorithm.

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

11/91

Different families of techniques in
Reinforcement learning

12/91

Overview of the techniques used for finding the optimal
policy π∗

In general, an RL agent may include one or more of the following
components :

→ a model of the environment in conjunction with a planning
algorithm.

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

13/91

Model-based methods
(planning-based techniques)

14/91

Motivation for planning with tree search

Given that you’re playing the crosses, what would be your next
move ?

Figure – Illustration of a state in the tic-tac-toe game.

→ how did you come up with that choice ?

15/91

Monte-Carlo Tree Search methods

The overall idea is to estimate the action with the highest
expected return.

V ∗(x) = Q∗(x , a = π∗) = Eπ∗ [r0 + γr1 + · · ·]
st

st+1

st+2

at , rt

at+1, rt+1

π∗,
r = r0

π∗,
r = r1

π∗

Figure – Illustration of model-based planning with tree search.

16/91

Motivation

MCTS algorithms need (only) a generative model of the
environment (i.e. model-based) :

st+1, rt ∼ G (st , at)

Advantages :

I it is possible to obtain samples without having the whole
transition function for the model in an explicit form.

I it can learn a strong policy only where needed (from the
current state s).

I it is useful for a sequence of decisions.

17/91

MCTS

MCTS can converge to the optimal policy (finite action space,
finite horizon) from any state s as long as the generative model is
accurate.
However,

• The breath of search grows with the actions space.

• The depth of search grows with the horizon considered.

18/91

Applications
I Tree search algorithms can be used along with different

heuristics as well as model-free deep RL techniques.

→ MCTS has been a key part of alpha Go for instance.

19/91

Strengths and weaknesses of model-based methods

The respective strengths of the model-free versus model-based
approaches depend on different factors.

X For some tasks, the model of the environment is available or
can be learned efficiently due to the particular structure of the
task.

7 If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

7 A model-based approach requires working in conjunction with
a planning algorithm, which is computationally demanding.

20/91

Model-free techniques

21/91

Overview of deep RL
In general, the learning algorithm in RL may include one or more of
the following components :

I a model of the environment in conjunction with a planning
algorithm.

→ a value function that provides a prediction of how good is
each state or each couple state/action (main focus), or

→ a direct representation of the policy π(s) or π(s, a)

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Deep learning has brought its generalization capabilities to RL.
22/91

Value based methods : recall

In an MDP (S,A,T ,R, γ), the expected return V π(s) : S → R
(π ∈ Π, e.g., S → A) is defined such that

V π(s) = E
[∑∞

k=0
γk rt+k | st = s, π

]
,

with γ ∈ [0, 1).

23/91

Value based methods : recall

In addition to the V-value function, the Q-value function
Qπ(s, a) : S × A→ R is defined as follows :

Qπ(s, a) = E
[∑∞

k=0
γk rt+k | st = s, at = a, π

]
.

The particularity of the Q-value function as compared to the
V-value function is that the optimal policy can be obtained directly
from Q∗(s, a) :

π∗(s) = argmax
a∈A

Q∗(s, a).

24/91

Value based methods : recall

The Bellman equation that is at the core of value-based learning
makes use of the fact that the Q-function can be written in a
recursive form :

Qπ(s, a) = E
[∑∞

k=0
γk rt+k | st = s, at = a, π

]
= E

[
rt +

∑∞

k=1
γk rt+k | st = s, at = a, π

]
= E

[
rt + γQπ(st+1, a

′ ∼ π) | st = s, at = a, π
]

In particular :

Q∗(s, a) = E
[
rt + γQ∗(st+1, a

′ ∼ π∗) | st = s, at = a, π∗
]

= E
[
rt + γ max

a′∈A
Q∗(st+1, a

′) | st = s, at = a, π∗
]

25/91

Convergence Q-learning

Theorem : Given a finite MDP, the Q-learning algorithm given by
the update rule

Q(st , at)← Q(st , at) + αt [rt + γ max
a′∈A

Qt(st+1, a
′)− Qt(st , at)],

converges w.p.1 to the optimal Q-function as long as

I
∑

t αt =∞ and
∑

t α
2
t <∞, and

I the exploration policy π is such that
Pπ[at = a|st = s] > 0,∀(s, a).

26/91

Convergence Q-learning

Theorem : Given a finite MDP, the Q-learning algorithm given by
the update rule

Q(st , at)← Q(st , at) + αt [rt + γ max
a′∈A

Qt(st+1, a
′)− Qt(st , at)],

converges w.p.1 to the optimal Q-function as long as

.
∑

t αt =∞ and
∑

t α
2
t <∞, and

. the exploration policy π is such that
Pπ[at = a|st = s] > 0,∀(s, a).

27/91

Limitations of tabular approaches

A tabular approach fails for large scale problems due to the curse
of dimensionality.

I Robot states with 10 features (e.g. position, speed, angle of
joints) discretized into 100 bins → 10010 = 1020 states.

I Chess : ≈ 10120 states

I Go : ≈ 10170 statess

Three problems

• Memory

• Compute time

• No generalization in the limited data context

28/91

Limitations of tabular approaches

A tabular approach fails for large scale problems due to the curse
of dimensionality.

I Robot states with 10 features (e.g. position, speed, angle of
joints) discretized into 100 bins → 10010 = 1020 states.

I Chess : ≈ 10120 states

I Go : ≈ 10170 statess

Three problems

• Memory

• Compute time

• No generalization in the limited data context

28/91

How can we scale with deep
learning as a function

approximator ?

29/91

Function approximators

A function approximator f : X → Y parameterized with θ ∈ Rnθ

takes as input x ∈ X and gives as output y ∈ Y (X and Y depend
on the application) :

y = f (x ; θ). (4)

x

y

Polynomial of degree 1
 for the model

Model
True function
Training samples

x

y

Polynomial of degree 4
 for the model

Model
True function
Training samples

x

y

Polynomial of degree 10
 for the model

Model
True function
Training samples

30/91

Different types of function approximators

Flexible Differentiable

Linear function approximator 7 X
SVMs (X) 7

Tree-based approximators (X) 7
...

...
...

Neural networks X X

Neural networks (with backpropogation of the gradients) has
brought its generalization capabilities to RL.

31/91

Different types of function approximators

Flexible Differentiable

Linear function approximator 7 X
SVMs (X) 7

Tree-based approximators (X) 7
...

...
...

Neural networks X X

Neural networks (with backpropogation of the gradients) has
brought its generalization capabilities to RL.

31/91

Gradient descent
We need an objective function to be minimized J(θ) that is a
differentiable function of parameters θ.
It starts at an initial point and then repeatedly takes a step
opposite to the gradient direction of the function at the current
point.

for k = 0, 1, 2, . . . do
gk ← ∇J(θk)
θk+1 ← θk − αkgk

end for

θ0

θ1

θ2

θ3

θ4

θ5

32/91

Q-learning with function approximator
We can represent value functions with function approximators and
parameters θ :

Q(s, a; θ) ≈ Q(s, a)

Q-network usual structure (finite number nA of actions) :

Q-network
with

parameters
θ

s

Q(s, a(1); θ)

Q(s, a(2); θ)

. . .

Q(s, a(nA); θ)

33/91

Q-learning with function approximator

The parameters θ are updated with gradient descent :

θ := θ − α∇θ
(
Q(s, a; θ)− Y Q

k

)
2︸ ︷︷ ︸

Objective to be minimized

with the target

Y Q
k = r + γ max

a′∈A
Q(s ′, a′; θk).

34/91

DQN algorithm
For Deep Q-Learning, we can represent value function by deep
Q-network with weights θ (instabilities !). In the DQN algorithm :

I Replay memory
I Target network

Update
Q(s, a; θk)

Every C :
θ−k := θk

Replay memory
. . .

st , at , rt , st+1

. . .

rt + γmax
a′∈A

(Q(st+1, a
′; θ−k))

Policy

Environment

Figure – Sketch of the DQN algorithm. Q(s, a; θk) is initialized to random
values (close to 0) everywhere on its domain and the replay memory is initially
empty ; the target Q-network parameters θ−k are only updated every C
iterations with the Q-network parameters θk and are held fixed between
updates ; the update uses a mini-batch (e.g., 32 elements) of tuples
< s, a, r , s ′ > taken randomly in the replay memory.

35/91

Example : Mountain car

Figure – Mountain car optimal policy

36/91

Visualization of Q-values in mountain car

Figure – DQN for mountain car (V = maxa Q(s, a))

37/91

Mountain car

Figure – Application to the mountain car domain : V = maxa Q(s, a).

38/91

Deep learning architectures
Similarly to other fields of machine learning, there exists a whole
zoo of deep learning modules that can be combined into one deep
learning architecture.

Figure – Neural network architecture

39/91

Beyond deep Q learning

I Double DQN

I Multi-step learning

I How to discount deep RL

I Dueling network

I Fighting overfitting and lack of plasticity

I Distributional RL

I Some state-of-the-art results

40/91

State of the art

Figure – State of the art algorithms on Atari 100k benchmark.

Source : “Bigger, Better, Faster : Human-level Atari with human-level
efficiency” (2023), M Schwarzer et al.

41/91

Real-world examples using deep RL

42/91

Stratospheric Balloon

Figure – a, Schematic of a superpressure balloon navigating a wind
field. The balloon remains close to its station by moving between winds
at different altitudes. Its altitude range is indicated by the upper and
lower dashed lines. b, The balloon’s flight path, viewed from above. The
station and its 50-km range are shown in light blue. Shaded arrows
represent the wind field. The wind field constantly evolves, requiring the
balloon to replan at regular intervals.

More details : Autonomous navigation of stratospheric balloons using reinforcement
learning, M. G. Bellemare et al., 2020 (Nature). 43/91

https://www.nature.com/articles/s41586-020-2939-8
https://www.nature.com/articles/s41586-020-2939-8

Real-world application of deep RL : microgrid
A microgrid is an electrical system that includes multiple loads and
distributed energy resources that can be operated in parallel with
the broader utility grid or as an electrical island.

Microgrid

44/91

Microgrids and storage

There exist opportunities with microgrids featuring :

I A short term storage capacity (typically batteries),

I A long term storage capacity (e.g., hydrogen).

45/91

Structure of the Q-network

Input #1

Input #2

Input #3

...

Fully-connected
layersConvolutions Outputs

Figure – Sketch of the structure of the neural network architecture.
The neural network processes the time series using a set of convolutional
layers. The output of the convolutions and the other inputs are followed
by fully-connected layers and the ouput layer. Architectures based on
LSTMs instead of convolutions obtain similar results.

46/91

Results

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

LE
C

(
/k

W
h)

70 80 90 100 110 120
% of the robust sizings (PV, Battery, H2 storage)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

LE
C

(
/k

W
h)

70 80 90 100 110 120
% of the robust sizings (PV, Battery, H2 storage)

Without any external info
With seasonal info
With solar prediction
Optimal deterministic LEC
Naive policy LEC

Figure – LEC on the test data function of the sizings of the microgrid.

More details : Deep Reinforcement Learning Solutions for Energy Microgrids
Management, V. Francois-Lavet, D. Taralla, D. Ernst, R. Fonteneau, 2016 (EWRL).

47/91

https://www.researchgate.net/profile/Vincent_Francois5/publication/351600258_Deep_Reinforcement_Learning_Solutions_for_Energy_Microgrids_Management/links/609f909e92851cfdf3336d89/Deep-Reinforcement-Learning-Solutions-for-Energy-Microgrids-Management.pdf
https://www.researchgate.net/profile/Vincent_Francois5/publication/351600258_Deep_Reinforcement_Learning_Solutions_for_Energy_Microgrids_Management/links/609f909e92851cfdf3336d89/Deep-Reinforcement-Learning-Solutions-for-Energy-Microgrids-Management.pdf

Questions so far ?

Time for a break ?

48/91

Generalization in deep RL

49/91

Challenges of applying RL to real-world problems

In real-world scenarios, it is often not possible to let an agent
interact freely and sufficiently in the actual environment :

I The agent may not be able to interact with the true
environment but only with an inaccurate simulation of it. This
is known as the reality gap.

I The agent might have access to only limited data. This can
be due to safety constraints (robotics, medical trials, etc.),
compute constraints or due to limited exogenous data (e.g.,
weather conditions, trading markets).

50/91

Challenges of applying RL to real-world problems

In order to deal with the reality gap and limited data, different
elements are important :

I One can aim to develop a simulator that is as accurate as
possible.

I One can design the learning algorithm so as to improve
generalization (and/or use specific transfer learning
methods).

51/91

Generalization

In an RL algorithm, generalization refers to either

I the capacity to achieve good performance in an environment
where limited data has been gathered, or

I the capacity to obtain good performance in a related
environment. This latter case can be tackled with specific
transfer learning techniques.

52/91

Overview

To understand generalization in RL from limited data, we will

I recall the concept in supervised learning, and

I introduce the formulation in RL.

We’ll then discuss how an agent can have a good generalization in
RL (disclaimer : we’ll see where deep RL comes in !)

53/91

Bias and overfitting in supervised learning
For one given x ∼ X , the predictive model f (x | DLS) can be
illustrated as follows for unseen data y ∼ (Y | X = x) :

Low overfitting High overfitting

Low bias

High bias

Figure – Illustration of bias and overfitting for unseen tuples, where Y
is a 2D continuous RV for visualisation purposes.

54/91

Bias and overfitting in supervised learning
There are many choices to optimize the learning algorithm and
there is usually a tradeoff between the bias and the overfitting
terms to reach to best solution.

Low variance
=low overfitting

High variance
=high overfitting

Low bias

High bias

More data

55/91

Bias and overfitting in supervised learning
Assuming a random sampling scheme DLS ∼ DLS , f (x | DLS) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by :

I [f] = E
X

E
DLS

E
Y |X

L (Y , f (X | DLS)), (5)

where L(·, ·) is the loss function.

If L(y , ŷ) = (y − ŷ)2, the error
naturally gives the bias-variance decomposition :

E
DLS

E
Y |X

(Y − f (X | DLS))2 = σ2(x) + bias2(x), (6)

where

bias2(x) ,
(
EY |x(Y)− EDLS

f (x | DLS)
)2
,

σ2(x) , EY |x
(
Y − EY |x(Y)

)2︸ ︷︷ ︸
Internal variance

+EDLS

(
f (x | DLS)− EDLS

f (x | DLS)
)2

︸ ︷︷ ︸
Parametric variance = overfitting

.

56/91

Bias and overfitting in supervised learning
Assuming a random sampling scheme DLS ∼ DLS , f (x | DLS) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by :

I [f] = E
X

E
DLS

E
Y |X

L (Y , f (X | DLS)), (5)

where L(·, ·) is the loss function. If L(y , ŷ) = (y − ŷ)2, the error
naturally gives the bias-variance decomposition :

E
DLS

E
Y |X

(Y − f (X | DLS))2 = σ2(x) + bias2(x), (6)

where

bias2(x) ,
(
EY |x(Y)− EDLS

f (x | DLS)
)2
,

σ2(x) , EY |x
(
Y − EY |x(Y)

)2︸ ︷︷ ︸
Internal variance

+EDLS

(
f (x | DLS)− EDLS

f (x | DLS)
)2

︸ ︷︷ ︸
Parametric variance = overfitting

.

56/91

Bias and overfitting in reinforcement learning

This bias-variance decomposition highlights a tradeoff between

I an error directly introduced by the learning algorithm (the
bias) and

I an error due to the limited amount of data available (the
parametric variance).

Note that there is no such direct bias-variance decomposition for
loss functions other than the L2 loss ! It is however always possible
to decompose the prediction error with a term related to the lack
of expressivity of the model (the bias) and a term due to the
limited amount of data (overfitting comes from the variance of
f (x | DLS) on the loss when DLS ∼ DLS but 6= statistical variance
if loss function is not L2).

57/91

Bias and overfitting in reinforcement learning

This bias-variance decomposition highlights a tradeoff between

I an error directly introduced by the learning algorithm (the
bias) and

I an error due to the limited amount of data available (the
parametric variance).

Note that there is no such direct bias-variance decomposition for
loss functions other than the L2 loss ! It is however always possible
to decompose the prediction error with a term related to the lack
of expressivity of the model (the bias) and a term due to the
limited amount of data (overfitting comes from the variance of
f (x | DLS) on the loss when DLS ∼ DLS but 6= statistical variance
if loss function is not L2).

57/91

Bias and overfitting in supervised learning

Since there is no direct bias-variance decomposition for loss
functions other than L2 loss in supervised learning, there is not an
actual ”bias-variance” tradeoff in RL.

However, there is still a tradeoff between a sufficiently rich learning
algorithm (to reduce the model bias, which is present even when
the amount of data would be unlimited) and a learning algorithm
not too complex (so as to avoid overfitting to the limited amount
of data).

58/91

Bias and overfitting in RL

The batch or offline algorithm in RL can be seen as mapping a
dataset D ∼ D into a policy πD (independently of whether the
policy comes from a model-based or a model-free approach) :

D → πD .

In an MDP, the suboptimality of the expected return can be
decomposed as follows :

E
D∼D

[V π∗(x)− V πD (x)] = (V π∗(x)− V πD∞ (x))︸ ︷︷ ︸
asymptotic bias

+ E
D∼D

[(V πD∞ (x)− V πD (x))︸ ︷︷ ︸
error due to finite size of the dataset Ds

referred to as overfitting

].

59/91

How to obtain the best policy ?

Data
Policy
class

% of the
error

due to
overfitting

% of the
error due to
asymptotic

bias

Figure – Schematic representation of the bias-overfitting tradeoff.

60/91

How to improve generalization ?

We can improve generalization of RL thanks to the following
elements :

• an abstract representation that discards non-essential
features,

• the objective function (e.g., reward shaping, tuning the
training discount factor) and

• the learning algorithm (type of function approximator and
model-free vs model-based).

And of course, if possible :

• improve the dataset (exploration/exploitation dilemma in an
online setting)

61/91

Improving generalization

62/91

Combining model-free and
model-based

63/91

Choice of the learning algorithm : a parallel with
neurosciences

In cognitive science, there is a dichotomy between two modes of
thoughts (D. Kahneman. (2011). Thinking, Fast and Slow) :

I a ”System 1” that is fast and instinctive and

I a ”System 2” that is slower and more logical.

Figure – System 1 Figure – System 2

In deep reinforcement, a similar dichotomy can be observed when
we consider the model-free and the model-based approaches.

64/91

Choice of the learning algorithm and function approximator
selection

I The function approximator in deep learning characterizes how
the features will be treated into higher levels of abstraction. A
fortiori, it is related to feature selections (e.g., an attention
mechanism), etc.

I Depending on the task, finding a performant function
approximator is easier in either a model-free or a model-based
approach. The choice of relying more on one or the other
approach is thus also a crucial element to improve
generalization.

65/91

Using self-supervised learning and
abstract representations

66/91

Foreword

Vocabulary

I An encoder is a specific deep learning component that
transforms the input (to reduce the dimensionality).

I An abstract representation or latent representation is the
representation obtained after the input goes through the
encoder.

67/91

Foreword

Vocabulary

I An encoder is a specific deep learning component that
transforms the input (to reduce the dimensionality).

I An abstract representation or latent representation is the
representation obtained after the input goes through the
encoder.

67/91

Catcher

This environment has only a few important features :
(i) the position of the paddle and
(ii) the position of the blocks.

0 10 20 30

0

5

10

15

20

25

30

35

X1

1.00.50.00.51.01.52.0 X21.0
0.50.0 0.5 1.0

X 3

1.0

0.5

0.0

0.5

1.0

 State representation (action 0, action 1):

 Estimated transitions (action 0, action 1):

0.0

0.2

0.4

0.6

0.8

1.0

Be
gi

nn
in

g
to

 e
nd

 o
f t

ra
je

ct
or

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Es
tim

at
ed

 e
xp

ec
te

d
re

tu
rn

Figure –
Without interpretability loss.

X1

1.0 0.50.0 0.5
1.0 X21.0

0.5
0.0

0.5
1.0

X 3

1.0

0.5

0.0

0.5

1.0

 State representation (action 0, action 1):

 Estimated transitions (action 0, action 1):

0.0

0.2

0.4

0.6

0.8

1.0

Be
gi

nn
in

g
to

 e
nd

 o
f t

ra
je

ct
or

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Es
tim

at
ed

 e
xp

ec
te

d
re

tu
rn

Figure – With interpretability loss :
v(a(1)) = (1, 1) and v(a(2)) = (−1, 1).

68/91

Abstract representations for
reasoning, exploration and transfer

learning

69/91

Combining model-based and model-free via abstract
representations

We are interested to learn both the model and the value function
through one abstract representation :

I it can enforce a good generalization (information bottleneck),

I planning is computationally efficient,

I it facilitates interpretation of the decisions taken by the agent,

70/91

Information bottleneck

As opposed to auto encoders, we seek to preserve only relevant
information and we apply the Information Bottleneck (IB) principle
to representation learning of state. This gives us the functional
that we minimize

L = I [S ;X]− βI [(X); {X ∗,A∗}]

This corresponds to a trade-off between

I minimizing the encoding rate I [S ;X] and

I maximizing the mutual information between the abstract state
X (and reward) and the tuple previous abstract state, previous
action (X ∗,A∗).

71/91

Simple labyrinth
Abstract representation of states for a labyrinth
task (without any reward).

150 100 50 0 50 100 150 200

200

100

0

100

200

Figure – 2D representation
using t-SNE (blue represents
states where the agent is on the
left part, green on the right part
and orange in the junction).

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3):

Figure – The CRAR agent is able
to reconstruct a sensible
representation of its environment in
2 dimensions.

72/91

Combined Reinforcement via Abstract Representations
(CRAR)

t = 0 t = 1
s0 s1environment

a0

encoder encoder

model-based

transition
model

reward
model

abstract
state

abstract
state

r0

model-
free

model-
free

Q Q

. . .

Figure – Illustration of the integration of model-based and model-free
RL in the CRAR architecture.

The value function and the model are trained via the abstract
representation.

73/91

Learning the model

Here is how we learn the internal model :

Lτ (θe , θτ) =| (e(s; θe) + τ(e(s; θe), a; θτ)− e(s ′; θe)) |2,

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg) =| γ − g(e(s; θe), a; θg) |2 .

These losses train the weights of both the encoder and the
model-based components.

Training of the value function is done with DDQN

74/91

Learning the model

Here is how we learn the internal model :

Lτ (θe , θτ) =| (e(s; θe) + τ(e(s; θe), a; θτ)− e(s ′; θe)) |2,

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg) =| γ − g(e(s; θe), a; θg) |2 .

These losses train the weights of both the encoder and the
model-based components.

Training of the value function is done with DDQN

74/91

Learning the model

Here is how we learn the internal model :

Lτ (θe , θτ) =| (e(s; θe) + τ(e(s; θe), a; θτ)− e(s ′; θe)) |2,

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg) =| γ − g(e(s; θe), a; θg) |2 .

These losses train the weights of both the encoder and the
model-based components.

Training of the value function is done with DDQN

74/91

When learning the transition function there is a pressure to
decrease the amount of information being represented.
In our model, we introduce an entropy loss :

Ld1(θe) = exp(−Cd‖e(s1; θe)− e(s2; θe)‖2),

where s1 and s2 are random past states of the agent and Cd is a
constant.

75/91

Interpretability
Interpretability can mean that some features of the state
representation are distinctly affected by some actions. The
following optional loss makes the predicted abstract state change
aligned with the chosen embedding vector v(a) :

Linterpr (θe , θτ) = −cos
(
τ(e(s; θe), a; θτ)0:n, v(a)

)
,

where cos stands for the cosine similarity.

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3):

Figure – With enforcing Linterpr and v(a0) = [1, 0]

76/91

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
77/91

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
77/91

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
77/91

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
77/91

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

78/91

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

78/91

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

78/91

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

78/91

Planning - summary

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

To obtain the action selected at time t, we use a hyper-parameter D ∈ N
and use a simple sum of the Q-values obtained with planning up to a
depth D :

QD
plan(x̂t , a) =

D∑
d=0

Q̂d(x̂t , a).

The optimal action is given by argmax
a∈A

QD
plan(x̂t , a).

79/91

Generalization

0 50 100 150 200 250
Number of epochs

−5

−4

−3

−2

−1

0

1

Av
er

ag
e

sc
or

e
pe

r e
pi

so
de

 a
t t

es
t t

im
e

D= 1
D= 3
D= 6
DDQN

Figure – Meta-learning score on a distribution of labyrinths where the
training is done with a limited number of transitions obtained by a
random policy. 2× 105 tuples, ∼ 500 labyrinths.

More details : Combined Reinforcement Learning via Abstract Representations,
V. Francois-Lavet, Y. Bengio, D. Precup, J. Pineau (AAAI 2019).

80/91

Another important challenge : exploration

I Undirected exploration (e.g. ε-greedy)

I Directed exploration

I When rewards are not sparse, a measure of the
uncertainty on the value function can be used ;

I If sparse rewards or no rewards, some exploration rewards
have to be used.

81/91

Exploration

Given a point x in representation space, we define a reward
function for novelty that considers the sparsity of states around
x - with the average distance between x and its
k-nearest-neighbors in its visitation history buffer B :

ρ̂X (x) =
1

k

k∑
i=1

d(x , xi), (7)

where x is a given encoded state, k ∈ Z+, d(·, ·) is some distance
metric in RnX and xi are the k nearest neighbors (by encoding
states in B to representational space).

More details : Novelty Search in representational space for sample efficient
exploration, D. Tao, V. Francois-Lavet, J. Pineau (NeurIPS 2020).

82/91

Exploration

Figure : Multi step environment (left) and the abstract
representations of states (right)

83/91

Exploration
This technique can also be used for control tasks such as the
double pendulum (acrobot), where only intrinsic rewards allows the
agent to solve the task.

Figure : acrobot.

84/91

Transfer learning

Figure – Set up : the agent is trained in a distribution of MDPs and
evaluation is done in new domains with unknown backgrounds.

More details : Domain adversarial reinforcement learning, B. Li, V.
Francois-Lavet, T. Doan, J. Pineau (2020).

85/91

Component transfer learning

Figure – Set up : the agent is trained in a distribution of MDPs and
evaluation is done in new domains with unknown backgrounds.

More details : Component Transfer Learning for Deep RL Based on Abstract
Representations, Geoffrey van Driessel, V. Francois-Lavet (2021).

86/91

A few other challenges for RL
(disentanglement of controllable

and uncontrollable feature + causal
representations)

87/91

Disentangled (un-)controllable features

Figure – The disentangled latent state representations of four different
random maze observations. The left column represents the controllable
latent representation. The middle column represents the uncontrollable
latent representation and the right column is the original state.

88/91

Disentangled (un-)controllable features

Figure – The disentangled latent state representations of four different
random maze observations. The left column represents the controllable
latent representation. The middle column represents the uncontrollable
latent representation and the right column is the original state.

More details : Disentangled (Un) Controllable Features. JE Kooi, M
Hoogendoorn, V François-Lavet (2022).

89/91

Causality

Figure – Learning to learn causal graphs.

More details : A Meta-Reinforcement Learning Algorithm for Causal Discovery.
Andreas Sauter, Erman Acar, Vincent François-Lavet (2022).

90/91

Summary of the lecture

Markov Decision Processes

Different families of techniques in Reinforcement learning
Model-based methods (planning-based techniques)
Model-free techniques

How can we scale with deep learning as a function approximator ?

Real-world examples using deep RL

Generalization in deep RL

Improving generalization
Combining model-free and model-based
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

91/91

Questions ?

	Why deep RL?
	Markov Decision Processes
	Different families of techniques in Reinforcement learning
	Model-based methods (planning-based techniques)
	Model-free techniques

	How can we scale with deep learning as a function approximator?
	Deep Q-networks

	Real-world examples using deep RL
	Generalization in deep RL
	Generalisation from limited data in supervised learning
	Generalisation from limited data in reinforcement learning

	Improving generalization
	Combining model-free and model-based
	Using self-supervised learning and abstract representations

	Abstract representations for reasoning, exploration and transfer learning
	Generalization
	Exploration
	Transfer learning
	A few other challenges for RL (disentanglement of controllable and uncontrollable feature + causal representations)
	Conclusions

